
1. Condução do calor

Propagação do calor que ocorre por agitação molecular

- ✓ Predomina nos sólidos
- ✓ Menor intensidade nos líquidos
- ✓ Muito menos intenso nos gases
- ✓ Não ocorre através do vácuo

2. Lei da condução do calor

```
condutividade
                 área da seção
    térmica
                   transversal
 (cal/s.cm.°C)
                                 temperatura
                      (cm<sup>2</sup>)
                                 quente (°C)
                                temperatura
                   espessura
                                   fria (°C)
fluxo de calor ou
                      (cm)
corrente térmica
     (cal/s)
```

(K): relacionado à "rapidez"(c): relacionado à "energia"

Substância Condutividade térmica, k [J/(s · m · °C)]

Metais

Alumínio	240	Alta condutividade
----------	-----	--------------------

Latão 110

Cobre 390 Alta condutividade

Ferro 79

Chumbo 35

Prata 420 Alta condutividade

Aço inox 14

Gases

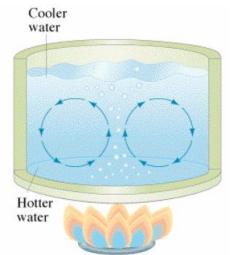
Ar 0.0256

Hidrogênio (H₂) 0.180

Nitrogênio (N_2) 0.0258

Exemplos de condução

1. Por que temos a sensação de uma latinha gelada estar mais fria do que uma garrafinha?



Exemplos de condução

- 2. Para produzir uma panela de cozinha que esquenta rápida e uniformemente, o fabricante deve escolher, como matéria-prima, um metal que tenha:
- a baixo calor específico e alta condutividade térmica.
 - b) alto calor específico e baixa condutividade térmica.
- c) alto calor específico e alta condutividade térmica.
- d) baixo calor específico e baixa condutividade térmica.
- e) a característica desejada não é relacionada ao calor específico e nem à condutividade térmica.

4. Convecção

Propagação do calor pela troca de posição das parcelas do fluido (líquido ou gás)

Variação de temperatura

Variação de volume

Variação de densidade

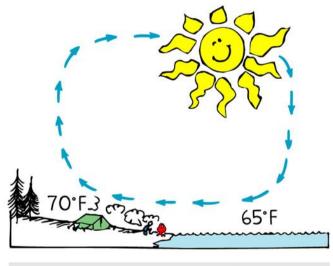
Tipos de Convecção

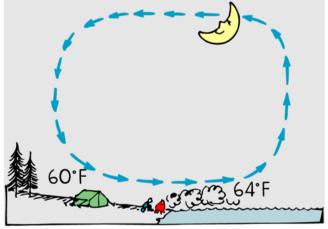
a) Natural – movimento do fluido provocado por diferenças de densidade

b) Forçada – movimento do fluido provocado por forças exteriores

Exemplos de convecção

1. Lareira

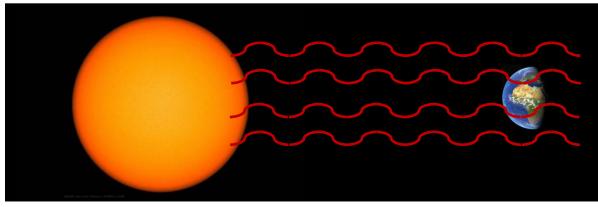

2. Geladeira e ar condicionado



Aquecer líquido ou gás: colocar o aquecedor <u>embaixo</u>. Ex: lareira Resfriar líquido ou gás: colocar o refrigerador <u>em cima</u>. Ex: ar condicionado

Exemplos de convecção

3. Sentido da brisa


4. Inversão térmica

5. Irradiação

Propagação do calor através de ondas eletromagnéticas.

Não necessita de meio material para se propagar.

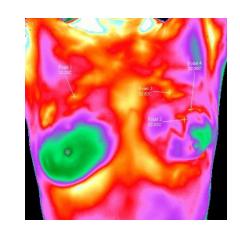
Maiores propriedades térmicas ocorre na faixa do infravermelho (ondas de calor)

Exemplos de irradiação:

1. Ser Humano

$$T(K) = 36.8 + 273 = 309.8 K$$

Para essa temperatura:

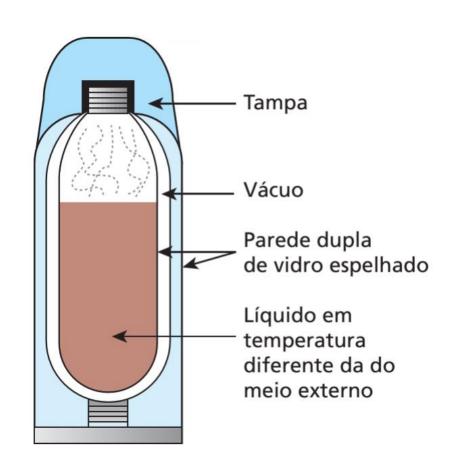

$$f_{\text{max}} \sim 3.2 \times 10^{11} \text{ Hz}$$

Infravermelho

2. Medicina

Aplicação na medicina como diagnóstico por imagem.

3. Estufa


A estufa é feita com teto e paredes de vidro. A temperatura interna é mais alta que a externa.

Exemplo clássico: garrafa térmica

Minimiza a propagação do calor por condução, convecção e irradiação

- ✓ Dois recipientes de vidro (mau condutor de calor)
- ✓ Vácuo entre os recipientes: evita a condução e convecção
- ✓ As superfícies internas espelhadas: reflete a radiação
- ✓ Tampa bem vedada: evita a propagação de calor por convecção

